skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tucker, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in StokesI,Q, andUparameters on large angular scales. Our results are consistent with the polarized signal being produced by the combination of Rayleigh scattering of thermal radiation from the ground and thermal emission from a population of horizontally aligned ice crystals with an anisotropic distribution described by Kolmogorov turbulence. The measured spatial scaling, frequency scaling, and elevation dependence of the polarized emission are explained by this model. Polarized atmospheric emission has the potential to significantly impact observations on the large angular scales being targeted by searches for inflationary B-mode CMB polarization. We present the distribution of measured angular power spectrum amplitudes in StokesQandIfor 4 yr of Austral winter observations, which can be used to simulate the impact of atmospheric polarization and intensity fluctuations at the South Pole on a specified experiment and observation strategy. We present a mitigation strategy that involves both downweighting significantly contaminated observations and subtracting a polarized atmospheric signal from the 150 GHz band maps. In observations with the SPT-3G instrument, the polarized atmospheric signal is a well-understood and subdominant contribution to the measured noise after implementing the mitigation strategies described here. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  4. The BICEP/Keck (BK) series of cosmic microwave background (CMB) polarization experiments has, over the past decade and a half, produced a series of field-leading constraints on cosmic inflation via measurements of the “B-mode” polarization of the CMB. Primordial B modes are directly tied to the amplitude of primordial gravitational waves (PGW), their strength parameterized by the tensor-to-scalar ratio, r, and thus the energy scale of inflation. Having set the most sensitive constraints to-date on r, σ(r) = 0.009 (r0.05 < 0.036, 95% C.L.) using data through the 2018 observing season (“BK18”), the BICEP/Keck program has continued to improve its dataset in the years since. We give a brief overview of the BK program and the “BK18” result before discussing the program’s ongoing efforts, including the deployment and performance of the Keck Array’s successor instrument, BICEP Array, improvements to data processing and internal consistency testing, new techniques such as delensing, and how those will ultimately serve to allow BK reach σ(r) ≲ 0.003 using data through the 2027 observing season. 
    more » « less
  5. null (Ed.)
    Alpine glaciers in the low- and mid-latitudes respond more quickly than large polar ice sheets to changes in temperature, precipitation, cloudiness, humidity, and radiation. Many high-altitude glaciers are monitored by ground observations, aerial photography, and satellite-borne sensors. Regardless of latitude and elevation, nearly all nonpolar glaciers and ice caps are undergoing mass loss, which compromises the records of past climate preserved within them. Almost without exception, the retreat of these ice fields is persistent, and a very important driver is the recent warming of the tropical troposphere and oceans. Here we present data on the decrease in the surface area of four glaciers from low- to mid-latitude mountainous regions: the Andes of Peru and northern Bolivia, equatorial east Africa, equatorial Papua, Indonesia, and the western Tibetan Plateau. Climate records based on oxygen isotopic ratios (δ18O) measured in ice cores drilled from several glaciers in these regions reveal that the records from elevations below ~6000 m above sea level have been substantially modified by seasonal melting and the movement of meltwater through porous upper firn layers. Fortunately, δ18O records recovered from higher altitude sites still contain well-preserved seasonal variations to the surface; however, the projected increase in the rate of atmospheric warming implies that climate records from higher elevation glaciers will eventually also be degraded. A long-term ice core collection program on the Quelccaya ice cap in Peru, Earth’s largest tropical ice cap, illustrates that the deterioration of its climate record is concomitant with the increase in mid-troposphere temperatures. The melting ice and resulting growth of proglacial lakes presents an imminent hazard to nearby communities. The accelerating melting of glaciers, if sustained, ensures the eventual loss of unique and irreplaceable climate histories, as well as profound economic, agricultural, and cultural impacts on local communities. 
    more » « less